Skip to Content
MilliporeSigma
All Photos(4)

Documents

229601

Sigma-Aldrich

Copper(II) acetate monohydrate

greener alternative

99.99% trace metals basis

Synonym(s):

Cupric acetate monohydrate

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Cu(CO2CH3)2 · H2O
CAS Number:
Molecular Weight:
199.65
Beilstein/REAXYS Number:
3730548
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

vapor density

6.8 (vs air)

Quality Level

assay

99.99% trace metals basis

form

powder or crystals

reaction suitability

core: copper

greener alternative product characteristics

Catalysis
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

greener alternative category

SMILES string

O.CC(=O)O[Cu]OC(C)=O

InChI

1S/2C2H4O2.Cu.H2O/c2*1-2(3)4;;/h2*1H3,(H,3,4);;1H2/q;;+2;/p-2

InChI key

NWFNSTOSIVLCJA-UHFFFAOYSA-L

Looking for similar products? Visit Product Comparison Guide

General description

Copper (II) acetate monohydrate is soluble in water and slightly soluble in methanol, diethylether and acetone. It can be synthesized by reacting acetic acid with copper (II) carbonate or copper(II) hydroxide or copper (II) oxide. Large scale commercial production is undertaken by placing copper metal in the presence of air and refluxing acetic acid. As a transition metal acetate, it can be used to form oxide nanoparticles by sonochemical methods.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Green Chemistry. This product has been enhanced for catalysis. Click here for more information.

Application

Used in the synthesis of copper oxide nanoparticles, Cu2ZnSnS4 films, which find applications in solar cells. It may be used in Zinc Oxide varistors, as a catalyst in the polymerization of organic materials and as a mordant in the dying of textiles. Industrially, it may be used as a ceramic pigment and as a fungicide.

signalword

Danger

Hazard Classifications

Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 2 - Eye Dam. 1 - Skin Corr. 1B

wgk_germany

WGK 3

flash_point_f

does not flash

flash_point_c

does not flash

ppe

dust mask type N95 (US), Eyeshields, Gloves


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 3

1 of 3

Cu2ZnSnS4 films deposited by a soft-chemistry method.
Todorov T, et al.
Thin Solid Films, 517(7), 2541-2544 (2009)
Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates.
Kumar RV, et al.
Chemistry of Materials, 12(8), 2301-2305 (2000)
Alexander Navarrete et al.
Faraday discussions, 183, 249-259 (2015-09-24)
A novel plasmonic reactor concept is proposed and tested to work as a visible energy harvesting device while allowing reactions to transform CO2 to be carried out. Particularly the reverse water gas shift (RWGS) reaction has been tested as a
Monica L Ohnsorg et al.
Langmuir : the ACS journal of surfaces and colloids, 31(22), 6114-6121 (2015-05-29)
Thin films can integrate the versatility and great potential found in the emerging field of metal-organic frameworks directly into device architectures. For fabrication of smart interfaces containing surface-anchored metal-organic frameworks, it is important to understand how the foundational layers form
Łukasz Orzeł et al.
Dalton transactions (Cambridge, England : 2003), 44(13), 6012-6022 (2015-02-28)
The nature of chlorophyll interactions with copper(II) ions varies considerably in organic solvents, depending on the dominant coordinative form. Besides formation of the metallo tetrapyrrolic complex, Cu(II) ions can cause oxidation of the pigment, reversible or irreversible, which can lead

Articles

Copper metal deposition processes are an essential tool for depositing interconnects used in microelectronic applications, giving group 11 (coinage metals: Copper, Silver, and Gold) an important place in atomic layer deposition (ALD) process development.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service