Skip to Content
MilliporeSigma
All Photos(3)

Documents

229733

Sigma-Aldrich

Lithium bromide

powder and chunks, ≥99.995% trace metals basis

Synonym(s):

Lithium monobromide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
LiBr
CAS Number:
Molecular Weight:
86.85
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

Quality Level

assay

≥99.995% trace metals basis

form

powder and chunks

impurities

≤50.0 ppm Trace Metal Analysis

mp

550 °C (lit.)

application(s)

battery manufacturing

SMILES string

[Li+].[Br-]

InChI

1S/BrH.Li/h1H;/q;+1/p-1

InChI key

AMXOYNBUYSYVKV-UHFFFAOYSA-M

Looking for similar products? Visit Product Comparison Guide

Related Categories

Application


  • Space cooling using geothermal single‐effect water/lithium bromide absorption chiller: This research explores the use of lithium bromide in geothermal absorption chillers for space cooling applications (M El Haj Assad, M Sadeghzadeh, 2021).

  • A facile and fast method for quantitating lignin in lignocellulosic biomass using acidic lithium bromide trihydrate (ALBTH): The paper introduces a novel method for lignin quantification using lithium bromide trihydrate (N Li, X Pan, J Alexander, 2016).

pictograms

Exclamation mark

signalword

Warning

Hazard Classifications

Acute Tox. 4 Oral - Eye Irrit. 2 - Skin Irrit. 2 - Skin Sens. 1

wgk_germany

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 4

1 of 4

Lithium carbonate 99.99% trace metals basis

Sigma-Aldrich

431559

Lithium carbonate

Lanthanum(III) oxide suitable for AAS, ≥99.9%

Supelco

289205

Lanthanum(III) oxide

2,4-Dimethylphenol 98%

Sigma-Aldrich

D174203

2,4-Dimethylphenol

Lithium oxide 97%, powder, −60 mesh

Sigma-Aldrich

374725

Lithium oxide

Zhongli Cai et al.
Radiation research, 159(3), 411-419 (2003-02-26)
An investigation of electron and hole transfer to oxidized guanine bases in DNA is reported. Guanine in DNA was preferentially oxidized by Br(2)(*-) at 298 K to 8-oxo-7,8-dihydro-guanine (8-oxo-G) and higher oxidation products. HPLC-EC analysis of irradiated DNA shows that
R Quaderer et al.
Organic letters, 3(20), 3181-3184 (2001-09-28)
[reaction: see text] The alkanesulfonamide "safety-catch" resin has proven useful for Fmoc-based synthesis of C-terminal peptide thioesters. We now report that the yield of isolated thioester can increase significantly when the cleavage reaction is carried out in 2 M LiBr/THF
Arlette Solladié-Cavallo et al.
The Journal of organic chemistry, 70(5), 1605-1611 (2005-02-26)
Both symmetrical and nonsymmetrical trans-2,3-diaryloxiranes are regio- and stereoselectively opened by the LiBr/Amberlyst 15 system. In the case of symmetrical trans-stilbene oxide, the syn- versus anti-bromohydrins ratio ranged between 88/12 and 30/70, by varying the reaction temperature from 20 to
Ngoc-Ly Hoang et al.
Journal of chromatography. A, 1205(1-2), 60-70 (2008-08-30)
The structure of starch molecules is relevant to nutrition and industrial applications. Size-exclusion chromatography (SEC, also known as GPC) of native starch generally suffers non-satisfactory repeatability and reproducibility of the dissolution and separation. This work combines two polar organic solvents:
Mohammad M Mojtahedi et al.
Organic letters, 9(15), 2791-2793 (2007-06-22)
A room temperature convenient disproportionation or reduction of aldehydes prompted by lithium bromide and triethylamine is described in a solvent-free environment. Distribution of the products to selectively direct the process toward Cannizzaro or Tishchenko reactions is controlled by the type

Articles

Research and development of solid-state lithium fast-ion conductors is crucial because they can be potentially used as solid electrolytes in all-solid-state batteries, which may solve the safety and energy-density related issues of conventional lithium-ion batteries that use liquid (farmable organic) electrolytes.

Lithium-ion batteries represent a group of electrochemical devices used for electricity storage and have attracted a lot of attention in the past two decades due to their portability, rechargeability and low cost.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service