Skip to Content
MilliporeSigma
All Photos(1)

Documents

246174

Sigma-Aldrich

Trimethoxymethylsilane

98%

Synonym(s):

Methyltrimethoxysilane

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH3Si(OCH3)3
CAS Number:
Molecular Weight:
136.22
Beilstein/REAXYS Number:
1736151
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.06

Quality Level

assay

98%

form

liquid

refractive index

n20/D 1.371 (lit.)

bp

102-104 °C (lit.)

density

0.955 g/mL at 25 °C (lit.)

SMILES string

CO[Si](C)(OC)OC

InChI

1S/C4H12O3Si/c1-5-8(4,6-2)7-3/h1-4H3

InChI key

BFXIKLCIZHOAAZ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Trimethoxymethylsilane (MTM) is an organosilicon compound widely used as a precursor for the preparation of silica-based materials, which finds the applications in various fields. Particularly in molecular assembly, linking nano building blocks, and selective synthesis oligosiloxane compounds. It can also be utilized as a crosslinker in the synthesis of polysiloxane polymers.

Application

Trimethoxymethylsilane can be used:
  • As a silica source for synthesizing polyethyleneimine-silica (PEI-silica) organic-inorganic hybrid particles.
  • To transform hydrophilic ceramic surfaces to hydrophobic by modifying the -OH groups.
  • To modify silica aerogels by inducing hydrophobicity and enhancing mechanical properties without affecting transparency.

pictograms

Flame

signalword

Danger

hcodes

Hazard Classifications

Flam. Liq. 2

wgk_germany

WGK 3

flash_point_f

48.2 °F

flash_point_c

9 °C

ppe

Eyeshields, Faceshields, Gloves, type ABEK (EN14387) respirator filter


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 7

1 of 7

The formation of polyethyleneimine?trimethoxymethylsilane organic?inorganic hybrid particles.
Neville F, et al.
Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 431, 42-50 (2013)
Investigation of Silane Modified Ceramic Surface of Porous Mullite Ceramics.
Markovska I, et al.
World Academy of Science, Engineering and Technology, 79(7), 272-276 (2013)
Organo-modified silica aerogels and implications for material hydrophobicity and mechanical properties.
Martin L, et al.
Journal of Materials Chemistry, 18(2), 207-213 (2008)
Utilization of alkoxysilyl groups for the creation of structurally controlled siloxane-based nanomaterials
Kuroda K, et al.
Chemistry of Materials, 26(1), 211-220 (2014)
Sameer Kulkarni et al.
Journal of chromatography. A, 1174(1-2), 50-62 (2007-11-21)
Sol-gel coating with covalently bonded low-molecular-weight (MW<300 Da) poly(ethylene glycol) (PEG) chains was developed for capillary microextraction (CME). The sol-gel chemistry proved effective in the immobilization of low-molecular-weight PEGs thanks to the formation of chemical bonds between the organic-inorganic hybrid

Articles

Advances in materials have often been led by the development of new synthetic methods that provide control over size, morphology and structure. The preparation of materials in a scalable and continuous manner is critical when development moves beyond lab-scale quantities.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service