Skip to Content
MilliporeSigma
All Photos(2)

Documents

410497

Sigma-Aldrich

4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran

Dye content 98 %

Synonym(s):

DCM

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C19H17N3O
CAS Number:
Molecular Weight:
303.36
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

form

solid

Quality Level

composition

Dye content, 98%

mp

215-220 °C (lit.)

λmax

468 nm

OLED device performance

ITO/Alq3:DCM/Alq3/Mg:Ag

  • Color: red
  • Max. EQE: 1.3 %

ITO/TPD/Alq3:DCM (10%)/Alq3/Mg:Ag
  • Color: red
  • Max. Luminance: 150 Cd/m2

SMILES string

CN(C)c1ccc(\C=C\C2=CC(\C=C(C)O2)=C(\C#N)C#N)cc1

InChI

1S/C19H17N3O/c1-14-10-16(17(12-20)13-21)11-19(23-14)9-6-15-4-7-18(8-5-15)22(2)3/h4-11H,1-3H3/b9-6+

InChI key

YLYPIBBGWLKELC-RMKNXTFCSA-N

General description

4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) is a red laser dye that consists of dicyanomethylene as an electron acceptor and dimethylaniline group as an electron donor. It has a π-conjugated 4H-pyran-4-ylidiene which bridges both the acceptor/donor groups. It can be used as a dopant and also in organic solid state lasers.

Application

DCM can be used as a laser dye to enhance the emission of distributed feedback (DFB) device by FÖrster resonance energy transfer (FRET). It may be used as a capping layer that allows the conversion of blue to red colored emission in organic light emitting diodes (OLED). DCM may also find potential applications in the enhancement of energy transfer of different devices like metal organic frameworks (MOFs), dye sensitized solar cells (DSSCs) and polarity sensors.

Features and Benefits

Voltage-tunable multicolor emission with enhanced luminance (~1000 cd/m2) was observed using varying amounts of DCM dye in a polymer light-emitting diode (PLED).

pictograms

FlameExclamation mark

signalword

Danger

Hazard Classifications

Acute Tox. 4 Inhalation - Eye Irrit. 2 - Flam. Sol. 1 - Skin Irrit. 2 - STOT SE 3

target_organs

Respiratory system

Storage Class

4.1B - Flammable solid hazardous materials

wgk_germany

WGK 3

flash_point_f

109.4 °F - closed cup

flash_point_c

43 °C - closed cup

ppe

Eyeshields, Gloves, type P3 (EN 143) respirator cartridges


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Yang Zhao et al.
Physical chemistry chemical physics : PCCP, 11(48), 11538-11545 (2009-12-22)
The equilibrium geometries, electronic structures, one-photon absorption (OPA) and two-photon absorption (TPA) properties of starburst 4-(dicyanomethylene)-2-methyl-6-[p-(dimethylamino)styryl]-4H-pyran (DCM) derivatives have been studied by using density functional theory (DFT) and Zerner's intermediate neglect of differential overlap (ZINDO) program. Results showed that increasing
Aaron J Van Tassle et al.
The journal of physical chemistry. B, 110(38), 18989-18995 (2006-09-22)
Time resolved visible pump, infrared probe transient absorption measurements of the solutes 4-dicyanomethylene-2-methyl-6-(p-(dimethylamino)styryl)-4H-pyran (DCM) and its isotopomer DCM-d6 are employed to probe the dynamics of charge transfer state formation in dimethyl sulfoxide (DMSO) and acetonitrile (MeCN). We observe a two
Luminous composite ultrathin films of the DCM dye assembled with layered double hydroxides and its fluorescence solvatochromism properties for polarity sensors.
Qin Y, et al.
Journal of Material Chemistry C, 3(20), 5246-5252 (2015)
Arnab Halder et al.
Langmuir : the ACS journal of surfaces and colloids, 20(3), 653-657 (2005-03-19)
Solvation dynamics of 4-(dicyanomethylidene)-2-[p-(dimethylamino)styryl]-6-methyl-4H-pyran (DCM) is studied in a polypeptide-surfactant aggregate consisting of gelatin and sodium dodecyl sulfate (SDS) in potassium dihydrogen phosphate (KP) buffer. The average solvation time (tauS) in gelatin-SDS aggregate at 45 degrees C is found to
Tunable two-color luminescence and host-guest energy transfer of fluorescent chromophores encapsulated in metal-organic frameworks.
Yan D, et al.
Scientific reports, 4(3), 4337-4337 (2014)

Articles

A tutorial of Display and Optoelectronics from Sigma-Aldrich.

Developed in the last several years, fluorescence quenching microscopy (FQM) has enabled rapid, inexpensive, and high-fidelity visualization of two-dimensional (2D) materials such as graphene-based sheets and MoS2.

Graphene has emerged as the new wonder material. Being only one atom thick and composed of carbon atoms arranged in a hexagonal honeycomb lattice structure, the interest in this material has exploded exponentially since 2004 when it was first isolated and identified using a very simple method.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service