Skip to Content
MilliporeSigma
All Photos(3)

Documents

437778

Sigma-Aldrich

3,4-Dichloroaniline

98%

Synonym(s):

3,4-Dichlorobenzenamine, 3,4-Dichlorophenylamine, 4,5-Dichloroaniline, 4-Amino-1,2-dichlorobenzene, m,p-Dichloroaniline

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Cl2C6H3NH2
CAS Number:
Molecular Weight:
162.02
Beilstein/REAXYS Number:
636837
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

Quality Level

assay

98%

bp

272 °C (lit.)

mp

69-71 °C (lit.)

SMILES string

Nc1ccc(Cl)c(Cl)c1

InChI

1S/C6H5Cl2N/c7-5-2-1-4(9)3-6(5)8/h1-3H,9H2

InChI key

SDYWXFYBZPNOFX-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

3,4-Dichloroaniline (3,4-DCA) is an aromatic amine and is a model environmental contaminant. It is an important precursor for the synthesis and degradation product of several herbicides. It is a metabolite of commonly applied herbicide, 3,4-dichloropropionanilide or propanil. Biodegradation kinetics of 3,4-DCA has been reported. Mechanism of degradation of aqueous 3,4-DCA in a novel dielectric barrier discharge plasma reactor has been studied. 1,2-dichlorobenzene, 2-chloro-1,4-benzoquinone, 3,4-dichlorophenyl isocyanate, 2-chlorohydroquinone, 3,4-dichloronitrobenzene and 3,4-dichlorophenol were identified as degradation intermediates by GC-MS analysis.

Application

3,4-Dichloroaniline may be employed as derivatization reagent for the HPLC analysis of perfluorooctanoic acid (PFOA).

signalword

Danger

Hazard Classifications

Acute Tox. 3 Dermal - Acute Tox. 3 Inhalation - Acute Tox. 3 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - Eye Dam. 1 - Skin Sens. 1

wgk_germany

WGK 3

flash_point_f

275.0 °F

flash_point_c

135.00 °C

ppe

Eyeshields, Faceshields, Gloves, type P2 (EN 143) respirator cartridges


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 7

1 of 7

Linuron PESTANAL®, analytical standard

Supelco

36141

Linuron

3,4-Difluoroaniline 99%

Sigma-Aldrich

270237

3,4-Difluoroaniline

3,4-Dichlorophenol 99%

Sigma-Aldrich

D70406

3,4-Dichlorophenol

3,5-Dichlorophenol 97%

Sigma-Aldrich

D70600

3,5-Dichlorophenol

3-Chloroaniline 99%

Sigma-Aldrich

C22407

3-Chloroaniline

M Monteiro et al.
Chemosphere, 62(8), 1333-1339 (2005-09-20)
The aromatic amine 3,4-dichloroaniline (DCA) is a model environmental contaminant, precursor for synthesis and degradation product of several herbicides, which is commonly found in European estuarine ecosystems. In this work, the possibility of using biochemical and histological markers to assess
Nan Ye et al.
Nanotoxicology, 12(5), 423-438 (2018-04-17)
Concomitant releases of various engineered nanoparticles (NPs) into the environment have resulted in concerns regarding their combined toxicity to aquatic organisms. It is however, still elusive to distinguish the contribution to toxicity of components in NP mixtures. In the present
Guoqiang Shan et al.
Se pu = Chinese journal of chromatography, 32(9), 942-947 (2015-03-11)
A simple derivatization method followed by high performance liquid chromatography (HPLC) for the analysis of perfluorooctanoic acid (PFOA) was developed. PFOA was firstly derivatized with 3,4-dichloroaniline (DCA) using carbodiimide method. The typical amidate product was characterized by mass spectrometry (MS).
Ricardo Marques et al.
Environmental science and pollution research international, 22(9), 6687-6695 (2014-11-26)
This study models the biodegradation kinetics of two toxic xenobiotic compounds in enriched mixed cultures: a commonly applied herbicide (3,4-dichloropropionanilide or propanil) and its metabolite (3,4-dichloroaniline or DCA). The dependence of the metabolite degradation kinetics on the presence of the
Ellen D G Michiels et al.
Environmental toxicology and chemistry, 38(3), 533-547 (2018-12-21)
Fish (embryo) toxicity test guidelines are mostly based on aquatic exposures. However, in some cases, other exposure routes can be more practical and relevant. Micro-injection into the yolk of fish embryos could offer a particular advantage for administering hydrophobic compounds

Protocols

GC Analysis of Anilines on Equity®-5

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service