Skip to Content
MilliporeSigma
All Photos(2)

Documents

544892

Sigma-Aldrich

Yttrium(III) oxide

nanopowder, <50 nm particle size

Synonym(s):

Yttria

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Y2O3
CAS Number:
Molecular Weight:
225.81
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

form

nanopowder

Quality Level

surface area

30-50 m2/g

particle size

<50 nm

mp

2410 °C (lit.)

density

5.01 g/mL at 25 °C (lit.)

SMILES string

O=[Y]O[Y]=O

InChI

1S/3O.2Y

InChI key

SIWVEOZUMHYXCS-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

  • Preparation and characterization of yttrium oxide nanoparticles at different calcination temperatures: This study examines the preparation methods and characteristics of yttrium oxide nanoparticles, highlighting their thermal stability and potential applications in various fields (AJ Abdulghani, WM Al-Ogedy, 2015).
  • Water assisted atomic layer deposition of yttrium oxide: Describes the development and analysis of yttrium oxide thin films, essential for enhancing the performance of electronic and optical devices (L Mai, N Boysen, E Subaşı, T de Los Arcos, D Rogalla, 2018).
  • Modification of stability properties of yttrium (III) oxide particles: Focuses on the stabilization of yttrium oxide particles for enhanced performance in environmental and technological applications (M Wiśniewska, K Herda, T Urban, P Nowicki, 2024).
  • Gamma ray induced thermoluminescence studies of yttrium (III) oxide nanopowders: Investigates the thermoluminescent properties of yttrium oxide doped with gadolinium, relevant for radiation detection and dosimetry (RK Tamrakar, K Upadhyay, DP Bisen, 2014).
  • Yttrium oxide nanoparticle synthesis: Provides an overview of the methods for synthesizing yttrium oxide nanoparticles and their biomedical applications, highlighting the material′s versatility and potential for future innovations (G Rajakumar, L Mao, T Bao, W Wen, S Wang, 2021).

Storage Class

13 - Non Combustible Solids

wgk_germany

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Gloves


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 5

1 of 5

Ytterbium(III) oxide 99.9% trace metals basis

Sigma-Aldrich

246999

Ytterbium(III) oxide

Erbium(III) oxide nanopowder, &lt;100&#160;nm particle size (BET), &#8805;99.9% trace metals basis

Sigma-Aldrich

637343

Erbium(III) oxide

Europium(III) oxide nanopowder, &lt;150&#160;nm particle size (TEM), 99.5% trace metals basis

Sigma-Aldrich

634298

Europium(III) oxide

Dysprosium(III) oxide &#8805;99.99% trace metals basis

Sigma-Aldrich

203181

Dysprosium(III) oxide

Amit Khurana et al.
Nanomedicine : nanotechnology, biology, and medicine, 18, 54-65 (2019-03-10)
Oxidative stress plays a major role in acute pancreatitis (AP), leading to massive macrophage infiltration. Nanoyttria (NY) possesses potent free radical scavenging activity. As reactive oxygen species and inflammation play major role in AP, we hypothesized that NY may alleviate
Carolina Mochales et al.
The journal of physical chemistry. B, 117(6), 1694-1701 (2012-11-08)
The interest in electrophoretic deposition (EPD) for nanomaterials and ceramics production has widely increased due to the versatility of this technique to effectively combine different materials in unique shapes and structures. We successfully established an EPD layering process with submicrometer
Bipin Kumar Gupta et al.
Small (Weinheim an der Bergstrasse, Germany), 8(19), 3028-3034 (2012-07-19)
Highly luminescent-paramagnetic nanophosphors have a seminal role in biotechnology and biomedical research due to their potential applications in biolabeling, bioimaging, and drug delivery. Herein, the synthesis of high-quality, ultrafine, europium-doped yttrium oxide nanophosphors (Y(1.9)O(3):Eu(0.1)(3+)) using a modified sol-gel technique is
Timur Sh Atabaev et al.
Journal of colloid and interface science, 373(1), 14-19 (2011-12-06)
Eu(3+) and Tb(3+) codoped Y(2)O(3) submicron particles were prepared using the simple urea homogeneous precipitation method. X-ray diffraction patterns revealed the synthesized particles to have a pure cubic Y(2)O(3) structure. Field-emission scanning electron microscopy and field-emission transmission electron microscopy showed
Masoud Allahkarami et al.
Dental materials : official publication of the Academy of Dental Materials, 27(12), 1279-1284 (2011-10-14)
Chipping failures observed clinically in bilayer systems of porcelain and zirconia restorations should be coupled with a monoclinic to tetragonal phase transformation in the zirconia layer due to the high compressive stress. Phase transformations were mapped using 2D micro X-ray

Articles

The union of distinct scientific disciplines is revealing the leading edge of Nanotechnology.

As with all types of fuel cells, a Solid Oxide Fuel Cell (SOFC) is capable of efficiently transforming chemical energy into electrical energy.

Advanced Inorganic Materials for Solid State Lighting

Magnetic materials permeate numerous daily activities in our lives. They are essential components of a diversity of products including hard drives that reliably store information on our computers, decorative magnets that keep the shopping list attached to the refrigerator door, electric bicycles that speed our commute to work, as well as wind turbines for conversion of wind energy to electrical power.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service