Skip to Content
MilliporeSigma
All Photos(1)

Documents

663913

Sigma-Aldrich

N,N′-Dioctyl-3,4,9,10-perylenedicarboximide

98%

Synonym(s):

PTCDI-C8

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C40H42N2O4
CAS Number:
Molecular Weight:
614.77
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Quality Level

assay

98%

form

solid

mp

>300 °C

λmax

526 nm

fluorescence

λem ≤533 nm in chloroform

semiconductor properties

N-type (mobility=1.7 cm2/V·s)

SMILES string

CCCCCCCCN1C(=O)c2ccc3c4ccc5C(=O)N(CCCCCCCC)C(=O)c6ccc(c7ccc(C1=O)c2c37)c4c56

InChI

1S/C40H42N2O4/c1-3-5-7-9-11-13-23-41-37(43)29-19-15-25-27-17-21-31-36-32(40(46)42(39(31)45)24-14-12-10-8-6-4-2)22-18-28(34(27)36)26-16-20-30(38(41)44)35(29)33(25)26/h15-22H,3-14,23-24H2,1-2H3

InChI key

YFGMQDNQVFJKTR-UHFFFAOYSA-N

Related Categories

Application

PTCDI-C8 can be used as an organic semiconductor to fabricate a wide range of opto-electronic based devices such as light emitting diodes, photovoltaic cells, and field effect transistors.

pictograms

Exclamation mark

signalword

Warning

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

target_organs

Respiratory system

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Gloves


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Lei Zhang et al.
Advanced materials (Deerfield Beach, Fla.), 30(28), e1801181-e1801181 (2018-05-22)
Self-standing nanostructures are of fundamental interest in materials science and nanoscience and are widely used in (opto-)electronic and photonic devices as well as in micro-electromechanical systems. To date, large-area and self-standing nanoelectrode arrays assembled on flexible substrates have not been
Wei Deng et al.
ACS applied materials & interfaces, 11(39), 36205-36212 (2019-08-31)
Highly ordered organic semiconductor single-crystal (OSSC) arrays are ideal building blocks for functional organic devices. However, most of the current methods are only applicable to fabricate OSSC arrays of a single component, which significantly hinders the application of OSSC arrays
Synthesis of PTCDI-C8 one dimensional nanostructures for photovoltaic applications.
IOP Conference Series: Materials Science and Engineering, 73(1), 012052-012052 (2015)
Graphene-organic hybrid electronics.
Kim C and Kymissis I
Journal of Material Chemistry C, 5(19), 4598-4613 (2017)
N Hiroshiba et al.
Physical chemistry chemical physics : PCCP, 13(13), 6280-6285 (2011-03-02)
Photo-induced carrier processes at the heteromolecular interface of N,N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C(8)) and quaterrylene (QT) on a molecular scale were examined by optical and photoelectron spectroscopy. The energy level alignments of the molecules were determined by X-ray photoelectron spectroscopy and the optical

Articles

Recent developments in the applications of organic single-crystal semiconductors which allow their use in organic electronics and energy harvesting.

Flexible electronic circuits, displays, and sensors based on organic active materials will enable future generations of electronics products that may eventually enter the mainstream electronics market.

Self-Assembled Nanodielectrics (SANDs) for Unconventional Electronics

Intrinsically stretchable active layers for organic field-effect transistors (OFET) are discussed. Polymer structural modification & post-polymerization modifications are 2 methods to achieve this.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service