Skip to Content
MilliporeSigma
All Photos(2)

Documents

700339

Sigma-Aldrich

Titanium(IV) oxide, mixture of rutile and anatase

nanoparticles, <100 nm particle size, dispersion, 48-52 wt. % in xylene, 99.9% trace metals basis

Synonym(s):

Titanium dioxide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
TiO2
CAS Number:
Molecular Weight:
79.87
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

assay

99.9% trace metals basis

form

dispersion
nanoparticles

concentration

48-52 wt. % in xylene

particle size

<100 nm
~30 nm (primary particle size of starting nanopowder)

bp

>135 °C

SMILES string

O=[Ti]=O

InChI

1S/2O.Ti

InChI key

GWEVSGVZZGPLCZ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Crystal phase: anatase/rutile mixture (ca. 80:20)

signalword

Danger

Hazard Classifications

Aquatic Chronic 3 - Asp. Tox. 1 - Eye Dam. 1 - Flam. Liq. 3 - Skin Corr. 1B - STOT RE 2 Inhalation - STOT SE 3

target_organs

Central nervous system,Liver,Kidney, Respiratory system

wgk_germany

WGK 3

flash_point_f

80.6 °F

flash_point_c

27 °C


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 4

1 of 4

Titanium dioxide nanotubes, 25&#160;nm average diameter, powder

Sigma-Aldrich

799289

Titanium dioxide

Titanium(IV) oxide nanowires, diam. × L ~100&#160;nm × 10&#160;&#956;m

Sigma-Aldrich

774510

Titanium(IV) oxide

Titanium dioxide NIST&#174; RM 8988, powder, particle size distribution

NISTRM8988

Titanium dioxide

Titanium dioxide NIST&#174; SRM&#174; 1898, nanomaterial

NIST1898

Titanium dioxide

Suxin Gui et al.
Journal of agricultural and food chemistry, 61(37), 8959-8968 (2013-08-24)
TiO₂ nanoparticles (NPs) are used in the food industry but have potential toxic effects in humans and animals. TiO₂ NPs impair renal function and cause oxidative stress and renal inflammation in mice, associated with inhibition of nuclear factor erythroid-2-related factor
Susan C Tilton et al.
Nanotoxicology, 8(5), 533-548 (2013-05-11)
The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect
Alessia D'Agata et al.
Nanotoxicology, 8(5), 549-558 (2013-05-24)
Marine bivalves (Mytilus galloprovincialis) were exposed to titanium dioxide (10 mg L(-1)) either as engineered nanoparticles (nTiO2; fresh, or aged under simulated sunlight for 7 days) or the bulk equivalent. Inductively coupled plasma-optical emission spectrometry analyses of mussel tissues showed
Roberta Tassinari et al.
Nanotoxicology, 8(6), 654-662 (2013-07-10)
The study explored possible reproductive and endocrine effects of short-term (5 days) oral exposure to anatase TiO2 nanoparticles (0, 1, 2 mg/kg body weight per day) in rat. Nanoparticles were characterised by scanning electron microscopy (SEM) and transmission electron microscopy
D Minetto et al.
Environment international, 66, 18-27 (2014-02-11)
The innovative properties of nanomaterials make them suitable for various applications in many fields. In particular, TiO2 nanoparticles (nTiO2) are widely used in paints, in cosmetics and in sunscreens that are products accessible to the mass market. Despite the great

Articles

Dye-sensitized solar cells directly convert sunlight to electricity

Over the last decade, dye-sensitized solar cells (DSSCs) have attracted much attention because these unconventional solar cells exhibit high performance and have the potential for low-cost production.

One of the more traditional photovoltaic devices, single crystalline silicon solar cells were invented more than 50 years ago, currently make up 94% of the market. Single crystalline silicon solar cells operate on the principle of p-n junctions formed by joining p-type and n-type semiconductors.

Titanium dioxide (TiO2) is an important n-type semiconducting material that shows interesting characteristics such as photoswitchable surface wettability, high photocatalytic activity, bistable electrical resistance states and high electron drift mobility.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service