Skip to Content
MilliporeSigma
All Photos(1)

Documents

700355

Sigma-Aldrich

Titanium(IV) oxide, mixture of rutile and anatase

nanoparticle, <250 nm particle size (DLS), paste, 53-57 wt. % in diethylene glycol monobutyl ether/ethylene glycol, 99.9% trace metals basis

Synonym(s):

Titanium dioxide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
TiO2
CAS Number:
Molecular Weight:
79.87
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

assay

99.9% trace metals basis

form

nanoparticle
paste

concentration

53-57 wt. % in diethylene glycol monobutyl ether/ethylene glycol

surface area

50 m2/g × 18 , BET surface area of starting nanopowder

particle size

~21 nm (primary particle size of starting nanopowder)
<250 nm (DLS)

viscosity

<1.5 mPa.s

bp

>200 °C

density

1.8 g/mL±0.2 at 25 °C

SMILES string

O=[Ti]=O

InChI

1S/2O.Ti

InChI key

GWEVSGVZZGPLCZ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Crystal phase: anatase/rutile ca. 80:20.

Legal Information

Product of Buhler, Inc.

pictograms

Health hazardCorrosion

signalword

Danger

hcodes

Hazard Classifications

Eye Dam. 1 - STOT RE 2 Oral

target_organs

Kidney

wgk_germany

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Faceshields, Gloves, Goggles, type ABEK (EN14387) respirator filter


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 5

1 of 5

Titanium(IV) oxide contains 1% Mn as dopant, nanopowder, &lt;100&#160;nm particle size (BET), &#8805;97%

Sigma-Aldrich

677469

Titanium(IV) oxide

Titanium dioxide NIST&#174; SRM&#174; 1898, nanomaterial

NIST1898

Titanium dioxide

Titanium dioxide nanotubes, 25&#160;nm average diameter, powder

Sigma-Aldrich

799289

Titanium dioxide

Titanium(IV) oxide nanowires, diam. × L ~100&#160;nm × 10&#160;&#956;m

Sigma-Aldrich

774510

Titanium(IV) oxide

Jingqi Liu et al.
Scientific reports, 9(1), 1362-1362 (2019-02-06)
Previously, textile dye sensitised solar cells (DSSCs) woven using photovoltaic (PV) yarns have been demonstrated but there are challenges in their implementation arising from the mechanical forces in the weaving process, evaporation of the liquid electrolyte and partially shaded cells
Susan C Tilton et al.
Nanotoxicology, 8(5), 533-548 (2013-05-11)
The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect
Alessia D'Agata et al.
Nanotoxicology, 8(5), 549-558 (2013-05-24)
Marine bivalves (Mytilus galloprovincialis) were exposed to titanium dioxide (10 mg L(-1)) either as engineered nanoparticles (nTiO2; fresh, or aged under simulated sunlight for 7 days) or the bulk equivalent. Inductively coupled plasma-optical emission spectrometry analyses of mussel tissues showed
Roberta Tassinari et al.
Nanotoxicology, 8(6), 654-662 (2013-07-10)
The study explored possible reproductive and endocrine effects of short-term (5 days) oral exposure to anatase TiO2 nanoparticles (0, 1, 2 mg/kg body weight per day) in rat. Nanoparticles were characterised by scanning electron microscopy (SEM) and transmission electron microscopy
D Minetto et al.
Environment international, 66, 18-27 (2014-02-11)
The innovative properties of nanomaterials make them suitable for various applications in many fields. In particular, TiO2 nanoparticles (nTiO2) are widely used in paints, in cosmetics and in sunscreens that are products accessible to the mass market. Despite the great

Articles

Dye-sensitized solar cells directly convert sunlight to electricity

Over the last decade, dye-sensitized solar cells (DSSCs) have attracted much attention because these unconventional solar cells exhibit high performance and have the potential for low-cost production.

One of the more traditional photovoltaic devices, single crystalline silicon solar cells were invented more than 50 years ago, currently make up 94% of the market. Single crystalline silicon solar cells operate on the principle of p-n junctions formed by joining p-type and n-type semiconductors.

Titanium dioxide (TiO2) is an important n-type semiconducting material that shows interesting characteristics such as photoswitchable surface wettability, high photocatalytic activity, bistable electrical resistance states and high electron drift mobility.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service