Skip to Content
MilliporeSigma
All Photos(3)

Documents

701122

Sigma-Aldrich

Iron(III) chloride

greener alternative

sublimed grade, ≥99.9% trace metals basis

Synonym(s):

Ferric chloride, Iron trichloride, Molysite

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
FeCl3
CAS Number:
Molecular Weight:
162.20
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

grade

sublimed grade

Quality Level

vapor density

5.61 (vs air)

vapor pressure

1 mmHg ( 194 °C)

assay

≥99.9% trace metals basis

form

powder or crystals

reaction suitability

reagent type: catalyst
core: iron

greener alternative product characteristics

Catalysis
Learn more about the Principles of Green Chemistry.

technique(s)

cell culture | mammalian: suitable

impurities

≤1000.0 ppm Trace Metal Analysis

mp

304 °C (lit.)

application(s)

battery manufacturing

greener alternative category

SMILES string

Cl[Fe](Cl)Cl

InChI

1S/3ClH.Fe/h3*1H;/q;;;+3/p-3

InChI key

RBTARNINKXHZNM-UHFFFAOYSA-K

Looking for similar products? Visit Product Comparison Guide

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for catalytic efficiency. Click here for more information.

Application

Iron(III) chloride may be employed for the synthesis of polypyrrole via polymerization reaction. It may be employed as catalyst for the intramolecular oxidative coupling for the preparation of phenanthrene ring. It is a cheap, eco-friendly oxidizing reagent useful for the following organic reactions:
  • polymerizations
  • oxidations
  • oxidative couplings
  • reductions
  • C-C bond formation
  • Ferrier rearrangement
  • multicomponent condensations
  • Friedel-Crafts reactions
  • cyclization′s
  • glycosidation
  • Prins-type cyclization
The vapor-phase co-reductions with other metal halides by hydrogen results in finely divided intermetallics with applications as structural materials or compounds with useful thermoelectric, magnetic, and oxidation-resitance properties.

pictograms

CorrosionExclamation mark

signalword

Danger

Hazard Classifications

Acute Tox. 4 Oral - Eye Dam. 1 - Met. Corr. 1 - Skin Irrit. 2

Storage Class

8B - Non-combustible, corrosive hazardous materials

wgk_germany

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Faceshields, Gloves


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 4

1 of 4

Optimum reaction conditions for the polymerization of pyrrole by iron (III) chloride in aqueous solution.
Armes SP.
Synthetic Metals, 20(3), 365-371 (1987)
Recent uses of iron (III) chloride in organic synthesis.
Diaz DD, et al.
Current Organic Chemistry, 10(4), 457-476 (2006)
Kailiang Wang et al.
The Journal of organic chemistry, 74(2), 935-938 (2008-12-05)
Easily available and nontoxic FeCl(3) catalyzes intramolecular oxidative coupling for the direct construction of the phenanthrene ring using meta-chloroperbenzoic acid as sole oxidant at room temperature in excellent yields. The mechanistic investigations show that FeCl(3)-catalyzed coupling proceeds through the heterolytic
Photoredox chemistry of iron (III) chloride and iron (III) perchlorate in aqueous media. A comparative study.
David F and David PG.
The Journal of Physical Chemistry, 80(6), 579-583 (1976)
Abdelwareth A O Sarhan et al.
Chemical Society reviews, 38(9), 2730-2744 (2009-08-20)
In this critical review, the use of iron(III) chloride in oxidative C-C couplings of arenes and related unsaturated compounds is presented and reviewed. The approach allows highly selective dimerisations of phenol derivatives, naphthols, and heterocyclic compounds. Sequential couplings give access

Articles

Professor Randal Lee (University of Houston, USA) discusses design considerations for iron oxide magnetic nanospheres and nanocubes used for biosensing, including synthetic procedures, size, and shape. The effects of these variables are discussed for various volumetric-based and surface-based detection schemes.

Lithium-ion batteries represent a group of electrochemical devices used for electricity storage and have attracted a lot of attention in the past two decades due to their portability, rechargeability and low cost.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service