Skip to Content
MilliporeSigma
All Photos(1)

Documents

777676

Sigma-Aldrich

Graphene oxide

greener alternative

4 mg/mL, dispersion in H2O, avg. no. of layers, 1

Synonym(s):

GO dispersion in H2O

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CxOyHz
UNSPSC Code:
12352103
NACRES:
NA.23

description

dispersibility: Polar solvents

Quality Level

form

dispersion in H2O

feature

avg. no. of layers 1 measured in 0.5mg/mL (>95%)
avg. no. of layers 1

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

concentration

4 mg/mL

greener alternative category

SMILES string

O=C(O)C1C2=C3C4=C5C6=C7C8=C9C%10=C%11C(C%12=C%13C%10=C%14C8=C%15C6=C%16C4=C%17C2=CC(C(O)=O)C%18=C%17C%19=C%16C%20=C%15C%21=C%14C%22=C%13C(C%23=C%24C%22=C%25C%21=C%26C%20=C%27C%19=C%28C%18=CC(C(O)=O)C%29=C%28C%30=C%27C%31=C%26C%32=C%25C%33=C%24C(C%34=C%35C

InChI

1S/C140H42O20/c141-131(142)26-13-23-15-44-62(140(159)160)45-16-24-14-40-31(132(143)144)5-1-29-41-20-48(135(149)150)56-33-7-3-28-27-2-6-32-55-37(133(145)146)11-9-35-60(138(155)156)42-17-25-18-43-61(139(157)158)36-10-12-38(134(147)148)58-46-21-50(137(153)154)59-47-22-49(136(151)152)57-34-8-4-30-39(19-26)51(23)78-72(44)88-75(45)80-52(24)79(54(29)40)95-71(41)83(56)101-93-69(33)64(28)91-90-63(27)68(32)92-86(66(35)55)73(42)81-53(25)82-74(43)87(67(36)58)96-76(46)85(59)103-97-77(47)84(57)102-94-70(34)65(30)89(78)105-104(88)115-98(80)111(95)116(101)126-122-110(93)107(91)120-119-106(90)108(92)99(81)114-100(82)112(96)118(103)128(124(114)119)123-113(97)117(102)127(130(122)129(120)123)121(109(94)105)125(115)126/h2,5,7-10,12-22,26,38,48-50H,1,3-4,6,11H2,(H,141,142)(H,143,144)(H,145,146)(H,147,148)(H,149,150)(H,151,152)(H,153,154)(H,155,156)(H,157,158)(H,159,160)

InChI key

VTWITIAIMADGRM-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product belongs to Enabling category of greener alternatives thus aligns with "Design for energy efficency". High concentrated graphene oxide sheets provide the prerequisite viscosity to bind the electrode materials together and enable 3D printing. Using water as a green solvent makes this aqueous ink system feasible for processing and drying safety and low cost. Click here for more information.

Application

GO may be used to deliver a controlled dosage of bone morphogenetic protein-2 for bone regeneration. It may be used to fabricate graphene-based transparent conductive electrodes. GO is attractive for use in electronic devices. In addition to being the components in electronic devices, GO and rGO have been used in nanocomposite materials, polymer composite materials, energy storage, biomedical applications, catalysis and as surfactants.

Storage and Stability

Seal well, prevent from light and store it in a cool room.

Storage Class

12 - Non Combustible Liquids

wgk_germany

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 1

1 of 1

Bone morphogenetic protein-2 for bone regeneration ? Dose reduction through graphene oxide-based delivery
La WG, et al.
Carbon, 78, 428-438 (2014)
Graphene-based transparent conductive electrodes
Yu K and Chen J
Material Matters, 9(1) null
Akira Hafuka et al.
International journal of environmental research and public health, 16(11) (2019-06-04)
We investigated the adsorption characteristics of geosmin and 2-methylisoborneol (MIB) on graphene oxide (GO) in the absence and presence of natural organic matter (NOM). The graphene oxide had fast adsorption kinetics for both compounds because of its open-layered structure, with
Liwen Ji et al.
Journal of the American Chemical Society, 133(46), 18522-18525 (2011-10-25)
The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Here, we use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide.
Kun Zhang et al.
Nature communications, 3, 1194-1194 (2012-11-15)
Reduction of graphene oxide at the nanoscale is an attractive approach to graphene-based electronics. Here we use a platinum-coated atomic force microscope tip to locally catalyse the reduction of insulating graphene oxide in the presence of hydrogen. Nanoribbons with widths

Articles

Graphene oxide is a unique material that can be viewed as a single monomolecular layer of graphite with various oxygen containing functionalities such as epoxide, carbonyl, carboxyl and hydroxyl groups.

Carbon nanomaterials (CNMs), such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), and graphene (Figure 1), have diverse commercial applications including lighter and stronger composite materials, improved energy storage devices, more sensitive sensors, and smaller transistors.

Professor Ebrahimi and Professor Robinson (Pennsylvania State University, USA) summarize recent advances in the synthesis of these 2D materials, resulting material properties, and related applications in biosensing of neurotransmitters, metabolites, proteins, nucleic acids, bacterial cells, and heavy metals.

The CRISPR/Cas9 system has recently emerged as a highly specific, efficient, and versatile gene editing technology that can be utilized to build disease models and correct diseased genes. Safe and effective delivery vectors for the CRISPR/Cas9 system are in critical need to enable clinical development and future applications of CRISPR/Cas9 systems. Professor Yang Liu summarizes recent progress in nonviral nanoparticle approaches for CRISPR/Cas9 delivery.

See All

Related Content

Batteries, fuel cells, and supercapacitors rely on electrochemical energy production. Understand their operation and electron/ion transport separation.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service