Skip to Content
MilliporeSigma
All Photos(2)

Documents

900839

Sigma-Aldrich

Guanidinium bromide

greener alternative

≥98%

Synonym(s):

Aminoformamidine hydrobromide, Aminomethanamidine hydrobromide, Diaminomethaniminium bromide, Greatcell Solar®, Guanidine hydrobromide

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
CH6BrN3
CAS Number:
Molecular Weight:
139.98
MDL number:
UNSPSC Code:
12352200
NACRES:
NA.23

Quality Level

assay

≥98%

form

powder or crystals

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

greener alternative category

SMILES string

NC(N)=N.[H]Br

InChI

1S/CH5N3.BrH/c2-1(3)4;/h(H5,2,3,4);1H

InChI key

VQNVZLDDLJBKNS-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more details.

Application

Guanidinium bromide finds applications in organic electronics as an additive or dopant inorganic semiconductors or conductive polymers. It can modify the electrical properties, such as conductivity or charge transport of the materials used in electronic devices.
Organohalide based perovskites have emerged as an important class of material for solar cell applications. Our perovskites precursors are useful for synthesizing mixed cation or anion perovskites needed for the optimization of the band gap, carrier diffusion length and power conversion efficiency of perovskites based solar cells.

Legal Information

Product of Greatcell Solar Materials Pty Ltd.
Greatcell Solar® is a registered trademark of Greatcell Solar Materials Pty Ltd
Greatcell Solar is a registered trademark of Greatcell Solar

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 7

1 of 7

Recent Advances in Hybrid Halide Perovskites-based Solar Cells.
Kalyanasundaram K, et al.
Material Matters, 11, 3-3 (2016)
Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells.
Yi C, et al.
Energy & Environmental Science, 9, 656-662 (2016)
Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties.
Rehman W, et al.
Energy & Environmental Science, 10, 361-369 (2017)
Zhiping Wang et al.
Advanced materials (Deerfield Beach, Fla.), 29(5), 1604186-1604186 (2016-12-03)
Air-stable doping of the n-type fullerene layer in an n-i-p planar heterojunction perovskite device is capable of enhancing device efficiency and improving device stability. Employing a (HC(NH

Articles

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service