Skip to Content
MilliporeSigma
All Photos(5)

Documents

L4000

Sigma-Aldrich

Lanthanum(III) oxide

≥99.9%

Synonym(s):

Lanthana, Lanthanum sesquioxide, Lanthanum trioxide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
La2O3
CAS Number:
Molecular Weight:
325.81
EC Number:
MDL number:
UNSPSC Code:
12352300
PubChem Substance ID:
NACRES:
NA.23

Quality Level

assay

≥99.9%

form

powder

reaction suitability

reagent type: catalyst
core: lanthanum

density

6.51 g/mL at 25 °C (lit.)

application(s)

battery manufacturing

SMILES string

O=[La]O[La]=O

InChI

1S/2La.3O

InChI key

KTUFCUMIWABKDW-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

La2O3 is a wide band gap p-type semiconductor also called lanthanum sesquioxide. It is the only lanthanide oxide with an empty Ln-4f shell and is widely used to prepare optical materials, dielectrics, and conductive ceramics. La2O3 can also be used as a catalyst in many organic transformations.

Application

Lanthanum(III) oxide improves the alkali resistance of the glass and because of its high refractive index and low dispersion, it is widely used in the preparation of camera and telescope lenses, infrared-absorbing glasses, and other special optical fibers. For example, it can be used as a starting material to prepare La2O3-CaO-B2O3-SiO2 glass for diagnosis X-ray shielding.

It can be used to prepare thermal-barrier coatings with a high thermal expansion coefficient and low thermal conductivity.

It can also be used as a recyclable catalytic system for the synthesis of diphenyl sulfides and selenides.
Precursor to LAMOX fast ion conductors and superconductors.

Features and Benefits

  • High refractive index
  • Thermal stability
  • Hardness
  • High dielectric constant

Storage Class

13 - Non Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Gloves


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 8

1 of 8

Yttrium(III) oxide 99.99% trace metals basis

Sigma-Aldrich

205168

Yttrium(III) oxide

Tantalum(V) oxide −60 mesh, 99.5%

Sigma-Aldrich

697222

Tantalum(V) oxide

Tantalum(V) oxide 99% trace metals basis

Sigma-Aldrich

303518

Tantalum(V) oxide

Strontium carbonate ≥99.9% trace metals basis

Sigma-Aldrich

472018

Strontium carbonate

Lanthanum oxide powder, max. particle size 200 micron, weight 200 g

GF10845626

Lanthanum oxide

Ling Zhang et al.
Journal of hazardous materials, 190(1-3), 848-855 (2011-05-03)
Phosphate removal from wastewater is very important for the prevention of eutrophication. Adsorption of phosphate from water was investigated using activated carbon fiber loaded with lanthanum oxide (ACF-La) as a novel adsorbent. The effects of variables (La/ACF mass ratio, impregnation
A K Singh et al.
Optics letters, 37(5), 776-778 (2012-03-02)
Low-power-threshold cw laser-induced incandescence (CWLII) has been observed in La(2)O(3):Er(3+)-Yb(3+) phosphor on excitation by a 976 nm IR laser. It is suggested that incandescence originates from the extensive heating induced by the nonradiative processes taking place following the laser excitation.
Pei Lu et al.
Environmental technology, 33(7-9), 1029-1036 (2012-06-23)
In this paper, catalytic samples of 10, 20, 30, 40 and 50% (w/w) urea/activated carbon fibre (AFC), 10% urea--5% La2O3/ACF, 10% urea--10% La2O3/ACF, 10% urea--15% La2O3/ACF, 20% urea--5% La2O3/ACF, 20% urea--10% La2O3/ACF, and 20% urea-15% La2O3/ACF were prepared and used
A A Nogiwa-Valdez et al.
Acta biomaterialia, 9(4), 6226-6235 (2012-12-12)
Zirconia has been used as an orthopaedic material since 1985 and is increasingly used in dental applications. One major concern with the use of zirconia is the significant loss in mechanical properties through hydrothermal degradation, with the uncontrolled transformation of
Lixia Wang et al.
Journal of hazardous materials, 196, 342-349 (2011-09-29)
This investigation was to increase the adsorption capacity of magnetite for Congo red (CR) by adulterating a small quantity of La(3+) ions into it. The adsorption capability of nanocrystalline Fe(3-x)La(x)O(4) (x=0, 0.01, 0.05, 0.10) ferrite to remove CR from aqueous

Articles

Innovation in dental restorative materials is driven by the need for biocompatible and natural-appearing restoration alternatives. Conventional dental materials like amalgam and composite resins have inherent disadvantages.

Rechargeable solid-state batteries are becoming increasingly important due to wide-spread use in computers, portable electronics, and vehicular applications.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service