Skip to Content
MilliporeSigma
All Photos(1)

Documents

75160

Supelco

Methyl oleate

analytical standard

Synonym(s):

Methyl cis-9-octadecenoate, Oleic acid methyl ester

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH3(CH2)7CH=CH(CH2)7CO2CH3
CAS Number:
Molecular Weight:
296.49
Beilstein/REAXYS Number:
1727037
EC Number:
MDL number:
UNSPSC Code:
85151701
PubChem Substance ID:
NACRES:
NA.24

grade

analytical standard

Quality Level

vapor pressure

10 mmHg ( 205 °C)

assay

≥98.5% (GC)

shelf life

limited shelf life, expiry date on the label

technique(s)

HPLC: suitable
gas chromatography (GC): suitable

refractive index

n20/D 1.452 (lit.)
n20/D 1.452

bp

218 °C/20 mmHg (lit.)

density

0.874 g/mL at 20 °C (lit.)

application(s)

cleaning products
cosmetics
flavors and fragrances
food and beverages
personal care

format

neat

functional group

ester

shipped in

ambient

storage temp.

2-8°C

SMILES string

CCCCCCCC\C=C/CCCCCCCC(=O)OC

InChI

1S/C19H36O2/c1-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19(20)21-2/h10-11H,3-9,12-18H2,1-2H3/b11-10-

InChI key

QYDYPVFESGNLHU-KHPPLWFESA-N

Looking for similar products? Visit Product Comparison Guide

General description

Methyl oleate is a methyl ester of the monounsaturated fatty acid (MUFA), oleic acid, which is abundantly found in dietary fats and oils.

Application

This analytical standard can also be used as follows:

  • Determination of free fatty acids in plasma samples following their methylation by gas chromatography (GC)
  • Comparative analysis of gas chromatography-combustion-mass spectrometry and gas chromatography-flame ionization detector methods for the determination of fatty acid methyl esters (FAMEs) in biodiesel samples
  • Simultaneous determination of fatty acid methyl esters in commercial food oil samples by gas chromatography-vacuum ultraviolet (GC-VUV) spectroscopy
  • Measurement of fatty acid methyl ester composition of various edible oil samples by 1H nuclear magnetic resonance (1H NMR) spectroscopy combined with partial least squares (PLS) method
  • Simultaneous determination of fatty acids in bovine colostrum samples by GC-FID after their derivatization to ester forms using an acidic catalyst boron trifluoride

Other Notes

Refer to the product′s Certificate of Analysis for more information on a suitable instrument technique. Contact Technical Service for further support.

Storage Class

10 - Combustible liquids

wgk_germany

WGK 1

flash_point_f

235.4 °F - closed cup

flash_point_c

113.0 °C - closed cup

ppe

Eyeshields, Gloves


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 10

1 of 10

Methyl arachidate analytical standard

Supelco

10941

Methyl arachidate

Methyl palmitoleate analytical standard

Supelco

76176

Methyl palmitoleate

Methyl palmitate ≥99% (capillary GC)

Sigma-Aldrich

P5177

Methyl palmitate

Methyl tetracosanoate analytical standard

Supelco

87115

Methyl tetracosanoate

Methyl elaidate analytical standard

Supelco

45119

Methyl elaidate

Methyl behenate analytical standard

Supelco

11940

Methyl behenate

Methyl cis-11-eicosenoate analytical standard

Supelco

17263

Methyl cis-11-eicosenoate

Methyl linoleate ≥98% (GC)

Sigma-Aldrich

L1876

Methyl linoleate

Methyl stearate ~99% (GC)

Sigma-Aldrich

S5376

Methyl stearate

Methyl decanoate analytical standard

Supelco

21479

Methyl decanoate

Selective transesterification of triolein with methanol to methyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst
Ebiura T, et al.
Applied Catalysis A: General, 283(1), 111-116 (2005)
Selective hydrogenation of methyl oleate into unsaturated alcohols: Relationships between catalytic properties and composition of cobalt?tin catalysts
Pouilloux.Y, et al.
Catalysis Today, 63(1), 87-100 (2000)
Annapurna Kumari et al.
Biotechnology for biofuels, 2(1), 1-1 (2009-01-16)
Transesterification of Jatropha oil was carried out in t-butanol solvent using immobilized lipase from Enterobacter aerogenes. The presence of t-butanol significantly reduced the negative effects caused by both methanol and glycerol. The effects of various reaction parameters on transesterification of
Michael A Rogers et al.
Langmuir : the ACS journal of surfaces and colloids, 25(15), 8556-8566 (2009-03-31)
The solvent type strongly affects the nucleation behavior of 12HSA and therefore strongly influences the peak nucleation rate, fiber length, spatial distribution of mass, and degree of branching. Using nonisothermal kinetic models, a correlation was established among the activation energy
Catherine M Klapperich et al.
Journal of biomedical materials research. Part A, 91(2), 378-384 (2008-11-05)
We describe a new class of biomaterials with potential for a variety of applications in tissue engineering, wound healing, and transdermal drug delivery. These materials are based on oleic methyl ester (OME), which is derived from various plant oils including

Articles

Separation of Methyl oleate; Caprylic acid; Heptanoic acid; Methyl decanoate; Methyl dodecanoate; Myristic acid; Methyl palmitate; Methyl palmitoleate; Methyl stearate; Methyl linoleate; Methyl linolenate; Acetic acid; Arachidic acid; Behenic acid; Propionic acid; Isobutyric acid; Valeric acid; Isovaleric acid; Isocaproic acid; Butyric acid

Protocols

Separation of Methyl erucate; Methyl palmitate; Methyl stearate; Methyl linolenate; Methyl eicosenoate; Methyl behenate; Methyl myristate; Methyl oleate; Methyl arachidate

Separation of Methyl decanoate; Methyl dodecanoate; Methyl myristate; Methyl palmitate; Methyl caprylate; Methyl oleate; Methyl linoleate; Methyl linolenate; Methyl stearate

-11-eicosenoate; Methyl elaidate; Methyl linoleate; Methyl myristate; Methyl myristoleate; Methyl palmitate; Methyl palmitoleate; Methyl oleate; Methyl pentadecanoate; Methyl tridecanoate; Methyl behenate; Methyl caprylate; Methyl erucate; Methyl heptadecanoate; Methyl arachidate

GC Analysis of a 37-Component FAME Mix on Omegawax® (15 m x 0.10 mm I.D., 0.10 μm), Fast GC Analysis

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service