- Acute-phase proteins investigation based on lectins affinity capture prior to 2-DE separation: application to serum from multiple sclerosis patients.
Acute-phase proteins investigation based on lectins affinity capture prior to 2-DE separation: application to serum from multiple sclerosis patients.
Plasma acute-phase proteins (APPs) glyco-isoforms are important biomarkers of inflammatory processes such as those occurring in multiple sclerosis (MS). Specific analysis of these proteins is often hampered by sample biochemical complexity. The aim of our study was to set up a method to accurately visualize, identify and quantify APPs glyco-isoforms in human serum. An enrichment strategy based on affinity chromatography using the carbohydrate-binding proteins concanavalin A (ConA) and erythrina cristagalli lectin (ECL) was applied to pooled serum samples from 15 patients and 9 healthy individuals. Image analysis of 2-DE detected 30 spots with a fold change higher than 1.5. A total of 14 were statistically significant (p value<0.05): 7 up-regulated and 7 down-regulated in MS samples. ESI LC-Nanospray IT mass spectrometry analysis confirmed that all of them were APPs isoforms supporting the idea that the accurate analysis of differential glycosylation profiles in these biomarkers is instrumental to distinguish between MS patients and healthy subjects. Additionally, overlaps in ConA/ECL maps protein patterns suggest how the used lectins are able to bind sugars harbored by the same oligosaccharide structure. Among identified proteins, the presence of complex and/or hybrid type N-linked sugar structures is well known. Performing galectin-3 binding and Western blotting, we were able to demonstrate a correlation between hybrid type glyco-isoforms of β-haptoglobin and MS. In conclusion, although the patho-physiological role of the identified species still remains unclear and further validations are needed, these findings may have a relevant impact on disease-specific marker identification approaches.