Skip to Content
MilliporeSigma
  • Chiral recognition of amino acids by use of a fluorescent resorcinarene.

Chiral recognition of amino acids by use of a fluorescent resorcinarene.

Applied spectroscopy (2008-05-24)
Gerald I Richard, Hadi M Marwani, Shan Jiang, Sayo O Fakayode, Mark Lowry, Robert M Strongin, Isiah M Warner
ABSTRACT

The spectroscopic properties of a chiral boronic acid based resorcinarene macrocycle employed for chiral analysis were investigated. Specifically, the emission and excitation characteristics of tetraarylboronate resorcinarene macrocycle (TBRM) and its quantum yield were evaluated. The chiral selector TBRM was investigated as a chiral reagent for the enantiomeric discrimination of amino acids using steady-state fluorescence spectroscopy. Chiral recognition of amino acids in the presence of the macrocycle was based on diastereomeric complexes. Results demonstrated that TBRM had better chiral discrimination ability for lysine as compared to the other amino acids. Partial least squares regression modeling (PLS-1) of spectral data for macrocycle-lysine guest-host complexes was used to correlate the changes in the fluorescence emission for a set of calibration samples consisting of TBRM in the presence of varying enantiomeric compositions of lysine. In addition, validation studies were performed using an independently prepared set of samples with different enantiomeric compositions of lysine. The results of multivariate regression modeling indicated good prediction ability of lysine, which was confirmed by a root mean square percent relative error (RMS%RE) of 5.8%.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Supelco
L-Valine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Supelco
L-Valine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Tetrahydrofuran, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, ACS reagent, ≥99.0%, contains 250 ppm BHT as inhibitor
Supelco
Tetrahydrofuran, analytical standard
Supelco
Tetrahydrofuran, Selectophore, ≥99.5%
Sigma-Aldrich
L-Valine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
L-Valine, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-Valine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
SAFC
L-Valine
Sigma-Aldrich
Tetrahydrofuran, ReagentPlus®, ≥99.0%, contains 250 ppm BHT as inhibitor
Sigma-Aldrich
D-Valine, ≥98%
Sigma-Aldrich
D-Valine, BioReagent, suitable for cell culture
Sigma-Aldrich
(1R,2R,3S,5R)-(−)-Pinanediol, 99%