Skip to Content
MilliporeSigma
  • Salt-inducible kinase 2 regulates mitotic progression and transcription in prostate cancer.

Salt-inducible kinase 2 regulates mitotic progression and transcription in prostate cancer.

Molecular cancer research : MCR (2014-12-31)
Hélène Bon, Karan Wadhwa, Alexander Schreiner, Michelle Osborne, Thomas Carroll, Antonio Ramos-Montoya, Helen Ross-Adams, Matthieu Visser, Ralf Hoffmann, Ahmed Ashour Ahmed, David E Neal, Ian G Mills
ABSTRACT

Salt-inducible kinase 2 (SIK2) is a multifunctional kinase of the AMPK family that plays a role in CREB1-mediated gene transcription and was recently reported to have therapeutic potential in ovarian cancer. The expression of this kinase was investigated in prostate cancer clinical specimens. Interestingly, auto-antibodies against SIK2 were increased in the plasma of patients with aggressive disease. Examination of SIK2 in prostate cancer cells found that it functions both as a positive regulator of cell-cycle progression and a negative regulator of CREB1 activity. Knockdown of SIK2 inhibited cell growth, delayed cell-cycle progression, induced cell death, and enhanced CREB1 activity. Expression of a kinase-dead mutant of SIK2 also inhibited cell growth, induced cell death, and enhanced CREB1 activity. Treatment with a small-molecule SIK2 inhibitor (ARN-3236), currently in preclinical development, also led to enhanced CREB1 activity in a dose- and time-dependent manner. Because CREB1 is a transcription factor and proto-oncogene, it was posited that the effects of SIK2 on cell proliferation and viability might be mediated by changes in gene expression. To test this, gene expression array profiling was performed and while SIK2 knockdown or overexpression of the kinase-dead mutant affected established CREB1 target genes; the overlap with transcripts regulated by forskolin (FSK), the adenylate cyclase/CREB1 pathway activator, was incomplete. This study demonstrates that targeting SIK2 genetically or therapeutically will have pleiotropic effects on cell-cycle progression and transcription factor activation, which should be accounted for when characterizing SIK2 inhibitors.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, ≥99% (GC), Grade I, suitable for plant cell culture
Sigma-Aldrich
Sodium fluoride, 99.99% trace metals basis
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0%
Sigma-Aldrich
Sodium orthovanadate, 99.98% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 1 M
Sigma-Aldrich
Potassium chloride solution, 0.01 M
Sigma-Aldrich
Acrylamide, ≥99.9%
Sigma-Aldrich
Sodium chloride solution, 0.1 M
Sigma-Aldrich
Sodium chloride, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acrylamide, ≥98.0%
Sigma-Aldrich
Acrylamide, SAJ first grade, ≥98.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Tris(tert-butoxy)silanol, 99.999%
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Snf1lk2
Sigma-Aldrich
Magnesium chloride solution, 0.1 M
SAFC
Sodium chloride solution, 5 M
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
SAFC
HEPES
SAFC
HEPES
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC), free-flowing, Redi-Dri
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Magnesium chloride, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture