Skip to Content
MilliporeSigma
All Photos(1)

Documents

769495

Sigma-Aldrich

Cobalt(II) chloride hexahydrate

≥97%

Synonym(s):

Cobaltous chloride hexahydrate

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CoCl2 · 6H2O
CAS Number:
Molecular Weight:
237.93
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

vapor pressure

40 mmHg ( 0 °C)

Quality Level

assay

≥97%
97.0-102.0% (KT)

form

solid

anion traces

nitrate (NO3-): ≤0.01%
sulfate (SO42-): ≤0.007%

cation traces

Fe: ≤0.005%
Ni: ≤0.15%
Pb: ≤0.002%
Zn: ≤0.05%

SMILES string

O.O.O.O.O.O.Cl[Co]Cl

InChI

1S/2ClH.Co.6H2O/h2*1H;;6*1H2/q;;+2;;;;;;/p-2

InChI key

GFHNAMRJFCEERV-UHFFFAOYSA-L

Looking for similar products? Visit Product Comparison Guide

Related Categories

Application

Cobalt (II) chloride finds applications in electroplating and catalyst preparation. It is also used as precursor for synthesis of electrode materials for lithium ion batteries.

Analysis Note

Substances not precipitated by ammonium sulfide (as sulphates) ≤ 0.3 %

signalword

Danger

Hazard Classifications

Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - Carc. 1B Inhalation - Eye Dam. 1 - Muta. 2 - Repr. 1B - Resp. Sens. 1 - Skin Sens. 1

Storage Class

6.1D - Non-combustible, acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 6

1 of 6

Electroplating and characterization of cobalt-nickel-iron and nickel-iron for magnetic microsystems applications
Rasmussen, FE., et al.
Sensors and actuators A, Physical, 92, 242-248 (2001)
Hyeohn Kim et al.
ACS nano, 15(1), 979-988 (2020-12-18)
Chiral inorganic nanomaterials have revealed opportunities in various fields owing to their strong light-matter interactions. In particular, chiral metal oxide nanomaterials that can control light and biochemical reactions have been highlighted due to their catalytic activity and biocompatibility. In this
Excellent lithium ion storage property of porous MnCo2O4 nanorods
Zeng, P., et al.
Royal Society of Chemistry Advances, 6, 23074-23084 (2016)
Sebastian Klemenz et al.
ChemSusChem, 11(18), 3150-3156 (2018-07-27)
High-performance catalysts for the oxygen-evolution reaction in water electrolysis are usually based on expensive and rare elements. Herein, mixed-metal borides are shown to be competitive with established electrocatalysts like noble metal oxides and other transition-metal(oxide)-based catalysts. Iron incorporation into nanoscale
One-step synthesis of cobalt and nitrogen co-doped carbon nanotubes and their catalytic activity for the oxygen reduction reaction
Fu, S., et al.
Journal of Material Chemistry A, 3, 12718-12722 (2015)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service